If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+319x+812=0
a = 1; b = 319; c = +812;
Δ = b2-4ac
Δ = 3192-4·1·812
Δ = 98513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(319)-\sqrt{98513}}{2*1}=\frac{-319-\sqrt{98513}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(319)+\sqrt{98513}}{2*1}=\frac{-319+\sqrt{98513}}{2} $
| 7(u+2)-5u=24 | | -1x+20=31 | | 6^x^2-24=36^x | | 4v+4(v-2)=-16 | | -12k=3k | | Z=5-z | | 4y+2=29-2y | | 3(r+3)=5(r-3)+8 | | 0.6x=x–16 | | -x+5=5(x-5 | | .60y=y–16 | | 2n=-n+15 | | 0.60y=y–$16 | | .60x=x–$16 | | 2^x=0.0625 | | 4x+27=9x-3 | | -7x+2=2x+2-9 | | 5x^2=x-2=0 | | 4y+1=29-2y | | x^2-24=2^x | | (x+6)=27/x | | 1/5x+5/6=3 | | (2x+8)+(6x-4)=180 | | 3x^2+4x+64=0 | | -1x-6=3 | | x=5x^2 | | -4x=-2x+-8 | | 15m−0.50=25m−0.25 | | 7x=-5/2 | | 3^x^2=27^x | | 5(y+1)=-3y+21 | | 0.5*x^2=0.9*x |